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Abstract 

We propose here a method to compute sets of strongly related keywords from logs of user queries. This 
method relies on the construction and analysis of a huge (weighted) (directed) graph, from which we extract 
aggregates of words. The challenge which we address is to obtain relevant aggregates with reasonable 
computational costs. 
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1. From a log file to a directed weighted graph 
 
Given a large amount of queries (170 millions) entered by users searching for files in a P2P 
network: “Ten weeks in the life of an eDonkey server”, we create a graph. In this graph nodes are 
keywords and links are co-occurrence links: two words are linked together if they appear in the 
same query. Therefore only queries including more than one keyword are considered. The 
obtained graph has 2.8 million nodes (keywords) and 68 million links. 

In the graph each element, node and link, has an associated weight. This weight is the number 
of times that the node or link has been found in the log file (excluding one keyword queries).  We 
denote by WA the weight of node A and by WAB the weight of the link between A and B. 

 

.  
Figure 1: From log file to a graph: weighted nodes and link. 

 
We now turn the obtained weighted undirected graph into a directed version as follows. Given two 
nodes A and B we define the Coefficient of Reliability (CR) from A to B, denoted by 

CRA>B = 
A
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Figure 2: Directed version of the graph. 

2. First method  
The graph defined above encodes much information on the relations between words entered by 
users in their queries. Our goal now is to use this encoding to exhibit groups of words, called 
aggregates, with particularly strong relations. To achieve this, we will proceed as follows. We first 
compute the triangles in the graph (i.e. sets of three words with all these possible links between 
then) which constitute our initial aggregate. We then grow aggregates by merging triangles 
following these rules: 



 

 
L is removed if  CRA>B And CRB>A < Vdw [Too weak to keep] 

But L is kept if CRA>B Or CRA>B > Av [Too big to ignore] 
 

Figure 3: aggregate triangles and removing links. 
 

• Aggregate must remain biconnex : A biconnex graph is a graph where each node is 
connected by at least two paths to any other node of the graph.  

• Links with a CR lower than a predefined minimal Value (Vdw) for the two nodes 
are removed the relation except if one of its CR is higher than an Activation value 
(Av), (cf. Figure 3). 
 

 
Experimentation and results. 
Applying this method produces a massive aggregate containing typically more than 2 000 000 of 
words. This aggregate is too large to have any sense. The reason of that is that many links concern 
very rare words. Indeed than 50% of keywords are used once or twice.  These links are always 
kept because the CR is at least 50%. 
 

 
 

Figure 4: Rare words are too strongly linked with others words and especially with frequent 
words. 

3. Improved method 
The basic solution to improve the method above could be to remove rare words. This would not 
have really sense in pursuing our goal. We want to keep the opportunity to get rare and very used 
words in aggregates. To make this possible, we propose an algorithm that limits the size of 
aggregates. It relies on adapting parameters when aggregates reach a maximal defined size. 
 

 
Figure 5: Aggregation including size limitation principle 

 
Using the same algorithm as above, we first define a maximum aggregate size (MAS). Then 

we adapt 4 criteria I, the algorithm to keep aggregates size under this value (MAS). We defined for 
each of the four criteria, a start value and a final value. We defined too a number of step (NbSteps) 
to reach final criteria values. Each time aggregate reaches the maximum predefined size (MAS) 
we will increase Value Double Way (Vdw) and Activation Value (Av) to remove more links. At 
this step, we also modify the minimum (Min valid weight) and maximum (Max valid weight) weight 
of a node. We increase minimum weight and decrease maximum weight of node using specific 
formulas. By this way we will get limited number of keywords in each aggregate. 



 

 

IStep: Number of times aggregate reached the maximum size (MAS); Max(G.weight): Maximum number of 
use for a word in the graph; Min(G.weight): Minimum number of use for a word in the graph; 
Avg(G.weight): Average weight of keywords in the graph. 
 

Figure 6: Limits and step modification. Numeric values are the ones use in the experimentation. 
 
Experimentation and results. 
We chose to use 50 steps and a size limit of 80 keywords by aggregate. Starting with a set of well 
known keywords the improved method creates aggregates including these keywords. More the 
keywords’ weight decreases and more the number of aggregates, including the keyword, decreases 
too.  In figure 7 you will find a very short result of how number of aggregates and size of then 
evaluate in comparing the included well known node weight.  
 

 

Keywords Weight Number 
of 

aggregates 

Max  
Size 

Avg 
Size 

Min 
Size 

pthc 45737 96 78 9 3 
incest 13609 70 52 11 3 
ygold 9183 19 61 15 3 
ptsc 3189 14 11 6 3 
incesti 1277 2 4 3.5 3 
inceste 1220 3 17 12 7 
4yo 1042 4 14 9 4 
3yo 832 3 12 10 8  

 
Figure 7: Aggregates including 8 well known words.                    Figure 8: Sample of aggregates. 
 
Figure 8 presents parts of aggregates including the word “4yo”.   

 

CONCLUSION 
We presented a method to create aggregate of keywords from user queries encoded in a large 
graph. The method presents the advantage to keep a reasonable and a predefined maximum size 
for each aggregate. It produces seemingly relevant results, while keeping its computational cost 
reasonable. Assessing and refining the results is the next step to investigate. 
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Parameters Start value Final value New incremented values 
IStep=IStep+1 

Vdw 3 10 3 + 7 * (IStep / NbSteps) 

Av 10 51 10 + 41 * (IStep/ NbSteps) 

Min valid weight Min(G.weight)  
1 

Avg(G.weight) 
70 

Avg( G.weight ) ^ (IStep/NbSteps) 

Max valid weight 
 

Max(G.weight) 
328000 

Avg(G.weight) +1 
71 

Max(G.weight ) ^ ((NbStep-IStep)/NbStep) 
+ 

Avg(G.weight) 


