

Detecting keywords used by paedophiles
Christian Belbeze

Université de Toulouse, Institut de Recherche en Informatique de Toulouse. Email: christian@belbeze.com

Matthieu Latapy

 LIP6 – CNRS and UPMC. Email: matthieu.latapy@lip6.fr

Abstract

We propose here a method to compute sets of strongly related keywords from logs of user queries. This
method relies on the construction and analysis of a huge (weighted) (directed) graph, from which we extract
aggregates of words. The challenge which we address is to obtain relevant aggregates with reasonable
computational costs.

Keywords : Keyword, log file, search engine, cluster, aggregate, graph.

1. From a log file to a directed weighted graph

Given a large amount of queries (170 millions) entered by users searching for files in a P2P
network: “Ten weeks in the life of an eDonkey server”, we create a graph. In this graph nodes are
keywords and links are co-occurrence links: two words are linked together if they appear in the
same query. Therefore only queries including more than one keyword are considered. The
obtained graph has 2.8 million nodes (keywords) and 68 million links.

In the graph each element, node and link, has an associated weight. This weight is the number
of times that the node or link has been found in the log file (excluding one keyword queries). We
denote by WA the weight of node A and by WAB the weight of the link between A and B.

.
Figure 1: From log file to a graph: weighted nodes and link.

We now turn the obtained weighted undirected graph into a directed version as follows. Given two
nodes A and B we define the Coefficient of Reliability (CR) from A to B, denoted by

CRA>B =
A

AB

w

w

Figure 2: Directed version of the graph.

2. First method
The graph defined above encodes much information on the relations between words entered by
users in their queries. Our goal now is to use this encoding to exhibit groups of words, called
aggregates, with particularly strong relations. To achieve this, we will proceed as follows. We first
compute the triangles in the graph (i.e. sets of three words with all these possible links between
then) which constitute our initial aggregate. We then grow aggregates by merging triangles
following these rules:

L is removed if CRA>B And CRB>A < Vdw [Too weak to keep]

But L is kept if CRA>B Or CRA>B > Av [Too big to ignore]

Figure 3: aggregate triangles and removing links.

• Aggregate must remain biconnex : A biconnex graph is a graph where each node is
connected by at least two paths to any other node of the graph.

• Links with a CR lower than a predefined minimal Value (Vdw) for the two nodes
are removed the relation except if one of its CR is higher than an Activation value
(Av), (cf. Figure 3).

Experimentation and results.
Applying this method produces a massive aggregate containing typically more than 2 000 000 of
words. This aggregate is too large to have any sense. The reason of that is that many links concern
very rare words. Indeed than 50% of keywords are used once or twice. These links are always
kept because the CR is at least 50%.

Figure 4: Rare words are too strongly linked with others words and especially with frequent
words.

3. Improved method
The basic solution to improve the method above could be to remove rare words. This would not
have really sense in pursuing our goal. We want to keep the opportunity to get rare and very used
words in aggregates. To make this possible, we propose an algorithm that limits the size of
aggregates. It relies on adapting parameters when aggregates reach a maximal defined size.

Figure 5: Aggregation including size limitation principle

Using the same algorithm as above, we first define a maximum aggregate size (MAS). Then

we adapt 4 criteria I, the algorithm to keep aggregates size under this value (MAS). We defined for
each of the four criteria, a start value and a final value. We defined too a number of step (NbSteps)
to reach final criteria values. Each time aggregate reaches the maximum predefined size (MAS)
we will increase Value Double Way (Vdw) and Activation Value (Av) to remove more links. At
this step, we also modify the minimum (Min valid weight) and maximum (Max valid weight) weight
of a node. We increase minimum weight and decrease maximum weight of node using specific
formulas. By this way we will get limited number of keywords in each aggregate.

IStep: Number of times aggregate reached the maximum size (MAS); Max(G.weight): Maximum number of
use for a word in the graph; Min(G.weight): Minimum number of use for a word in the graph;
Avg(G.weight): Average weight of keywords in the graph.

Figure 6: Limits and step modification. Numeric values are the ones use in the experimentation.

Experimentation and results.
We chose to use 50 steps and a size limit of 80 keywords by aggregate. Starting with a set of well
known keywords the improved method creates aggregates including these keywords. More the
keywords’ weight decreases and more the number of aggregates, including the keyword, decreases
too. In figure 7 you will find a very short result of how number of aggregates and size of then
evaluate in comparing the included well known node weight.

Keywords Weight Number
of

aggregates

Max
Size

Avg
Size

Min
Size

pthc 45737 96 78 9 3
incest 13609 70 52 11 3
ygold 9183 19 61 15 3
ptsc 3189 14 11 6 3
incesti 1277 2 4 3.5 3
inceste 1220 3 17 12 7
4yo 1042 4 14 9 4
3yo 832 3 12 10 8

Figure 7: Aggregates including 8 well known words. Figure 8: Sample of aggregates.

Figure 8 presents parts of aggregates including the word “4yo”.

CONCLUSION
We presented a method to create aggregate of keywords from user queries encoded in a large
graph. The method presents the advantage to keep a reasonable and a predefined maximum size
for each aggregate. It produces seemingly relevant results, while keeping its computational cost
reasonable. Assessing and refining the results is the next step to investigate.

REFERENCES
Aidouni, F. and Latapy, M. and Magnien, C. Ten weeks in the life of an eDonkey server, Sixth

International Workshop on Hot Topics in Peer-to-Peer Systems (Hot-P2P 2009), May 29, 2009, Rome,
Italy.

Cui, H., Wen et al 2002, Probabilistic query expansion using query logs. Proceedings of the eleventh
international conference on World Wide Web, pp. 325 – 332.

Fu, L. et al , 2003, Collaborative querying through a hybrid query clustering approach, 2003, Digital libraries:
Technology and management of indigenous knowledge for global access, ICADL, pp. 111-122..

Gangnet, M. and Rosenberg, B., 1993, Constraint programming and graph algorithms, Annals of
Mathematics and Artificial Intelligence 8(3–4): 271–284.

Hoffmann, C. et al, 2000, Decomposition plans for geometric constraint systems, Proc. J. Symbolic
Computation 2000.

Latapy, M., 2007. Grands graphes de terrain – mesure et métrologie, analyse, modélisation, algorithmique.
Habilitation `a diriger des recherches, Université Pierre et Marie Curie, Paris, France.

Parameters Start value Final value New incremented values
IStep=IStep+1

Vdw 3 10 3 + 7 * (IStep / NbSteps)

Av 10 51 10 + 41 * (IStep/ NbSteps)

Min valid weight Min(G.weight)
1

Avg(G.weight)
70

Avg(G.weight) ^ (IStep/NbSteps)

Max valid weight

Max(G.weight)
328000

Avg(G.weight) +1
71

Max(G.weight) ^ ((NbStep-IStep)/NbStep)
+

Avg(G.weight)

